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Abstract In cultivated barley (Hordeum vulgare ssp.
vulgare), six-rowed spikes produce three times as many
seeds per spike as do two-rowed spikes. The determi-
nant of this trait is the Mendelian gene vrs1, located on
chromosome 2H, which is syntenous with rice (Oryza
sativa) chromosomes 4 and 7. We exploited barley–rice
micro-synteny to increase marker density in the vrs1
region as a prelude to its map-based cloning. The rice
genomic sequence, covering a 980 kb contig, identiWed
barley ESTs linked to vrs1. A high level of conserva-
tion of gene sequence was obtained between barley
chromosome 2H and rice chromosome 4. A total of 22
EST-based STS markers were placed within the target

region, and the linear order of these markers in barley
and rice was identical. The genetic window containing
vrs1 was narrowed from 0.5 to 0.06 cM, which facili-
tated covering the vrs1 region by a 518 kb barley BAC
contig. An analysis of the contig sequence revealed
that a rice Vrs1 orthologue is present on chromosome
7, suggesting a transposition of the chromosomal seg-
ment containing Vrs1 within barley chromosome 2H.
The breakdown of micro-collinearity illustrates the
limitations of synteny cloning, and stresses the impor-
tance of implementing genomic studies directly in the
target species.

Introduction

Modern day cereal species have evolved from a com-
mon ancestor over a 60 million year period (Devos
2005), with the result that a level of collinearity obtains
between the model cereal rice and other major cereals
studied to date (Gale and Devos 1998). Although chro-
mosome number has not been conserved, the chromo-
somes of barley and wheat can nevertheless be
reconstructed from rice chromosomes segments
(Moore 1995; Devos 2005). Substantial sequence
collinearity level exists in the coding regions of rice and
both barley and wheat (Ramakrishna et al. 2002; Yan
et al. 2003; Chantret et al. 2004). The complete rice
genomic sequence (IRGSP 2005) and an extensive col-
lection of barley ESTs (http://www.ncbi.nlm.nih.gov/
dbEST/dbEST_summary.html) can be used together to
accelerate the synteny-based positional cloning of
barley genes (Perovic et al. 2004; Gottwald et al. 2004).

Uniquely for species in the Triticeae tribe, each
rachis node in the Hordeum species carries three,

Communicated by B. Keller.

Electronic supplementary material The online version of this 
article (doi:10.1007/s00122-007-0522-4) contains supplementary 
material, which is available to authorized users.

M. Pourkheirandish · T. Komatsuda (&)
National Institute of Agrobiological 
Sciences (NIAS), Tsukuba 305-8602, Japan
e-mail: takao@aVrc.go.jp

M. Pourkheirandish · T. Fujimura
Graduate School of Life and Environmental 
Sciences, University of Tsukuba, 
Tsukuba 305-8572, Japan

T. Wicker
Institute of Plant Biology, 
University of Zürich, 
Zürich 8008, Switzerland

N. Stein
Leibniz Institute of Plant Genetics 
and Crop Plant Research (IPK), 
Gatersleben 06466, Germany
123

10.1007/s00122-007-0522-4
10.1007/s00122-007-0522-4
http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html


1358 Theor Appl Genet (2007) 114:1357–1365
rather than one spikelet (Bothmer and Jacobsen 1985;
Bothmer et al. 1995). The central spikelet is fertile and
goes on to develop into a grain. In two-rowed barleys,
the two lateral spikelets are reduced in size and sterile,
but in six-rowed types, all three spikelets are fertile.
Wild barley (Hordeum vulgare ssp. spontaneum) is
two-rowed (Vrs1Vrs1). In wild barley, the three spik-
elets and their slender awns form a light and arrow-
head-like dispersal unit that both facilitates seed
dispersal by animals and aids seed burial (Bothmer
et al. 1995; Zohary 1963). The mutation to the reces-
sive six-rowed type (vrs1vrs1) is thought to have been
selected after the domestication of cultivated barley
because the six-rowed spike is a key trait for achieving
a quantum increase in grain yield (Bothmer and Jacob-
sen 1985; Harlan 1995).

In this paper, we have explored the micro-collinear-
ity in the rice and barley genomes in the region of vrs1.
The vrs1 locus is located on chromosome 2H (GriVee
1925; Robertson et al. 1965) in a 0.5 cM region deWned
by the marker loci cMWG699 and MWG865 (Komat-
suda and Tanno 2004; He et al. 2004). This barley chro-
mosome is a composite of rice chromosomes 4 and 7
(Moore 1995; Laurie 1997; Rostoks et al. 2005). Both
Ppd-H1, a major determinant of the photoperiodic
response (Dunford et al. 2002), and sdw3, a dwarWng
gene (Gottwald et al. 2004) are located on the rice
chromosome 7 portion of chromosome 2H, and a synt-
eny-based approach proved useful in both cases as a
means of increasing marker density around the target
genes. Our objectives were to enrich the marker con-
tent around vrs1 as a prelude to its map-based cloning,
and to study the evolution of Vrs1 by a comparison of
its orthologues in barley and rice.

Materials and methods

Plant materials

The two-rowed barley cvs. ‘Kanto Nakate Gold’
(KNG, JP 15436) and ‘Golden Promise’ (GP, JP 15923)
and the six-rowed cv. ‘Azumamugi’ (AZ, JP 17209) are
maintained in the Gene Bank, NIAS, Tsukuba, Japan.
A two-rowed deWciens type ‘Debre Zeit 29’ (DZ, OU
E525) was obtained from the Research Institute for
Bioresources, Okayama University, Kurashiki, Okay-
ama, Japan, and a six-rowed mutant ‘New Golden
M13’ (NGM13), derived from two-rowed cv. ‘New
Golden’ (NG, JP 15718) (Makino et al. 1995) was
obtained from Dr. T. Makino, National Institute of
Crop Science, Tsukuba, Japan. A set of 99 F12 recombi-
nant inbred lines, generated from the cross

AZ £ KNG, was employed for primary mapping, and
high-resolution mapping was carried out using a selec-
tion of 79 individuals deWned by particular recombina-
tion events from three segregating populations one
of 6,269 gametes (Komatsuda and Tanno 2004), one of
3,562 gametes from the cross AZ £ GP, and one
of 3,262 gametes from AZ £ KNG (See Supplemental
Table S1). The set of wheat (cv. Chinese Spring)—bar-
ley (cv. Betzes) chromosome addition lines (CALs),
were kindly provided by Dr. A. K. M. R. Islam,
Department of Plant Science, Waite Institute, Univer-
sity of Adelaide, Australia. Each of the six CALs con-
tains a single pair of barley chromosome in wheat
(chromosome 1H is not represented—Shepherd and
Islam 1981).

IdentiWcation of a barley–rice syntenous region

Barley markers linked to vrs1 (Komatsuda and Tanno
2004) were located on the rice genome by BLASTN
searches (http://tigrblast.tigr.org/euk-blast/index.cgi?
project = osa1). Barley ESTs giving the best match to
rice orthologues were selected using the Gramene
database (http://www.gramene.org/Oryza_sativa/index.
html). High copy number ESTs were excluded using
TIGR Plant Repeat Database (http://tigrblast.tigr.org/
euk-blast/index.cgi?project = plant.repeats). ESTs from
wheat and other cereal species were exploited where
no matching barley ESTs were available. In the Wnal
step the rice genomic DNA lying between the anno-
tated genes was analysed by gene prediction database
located at http://www.gramene.org/Oryza_sativa/index.
html and further gene prediction was done at http://
opal.biology.gatech.edu/GeneMark/eukhmm.cgi, based
on barley model and these were included as a source of
potential sequence for marker development.

Conversion of ESTs to PCR markers

Plant DNA was extracted as described by Komatsuda
et al. (1998). PCR primers of length 21 nt were
designed with Oligo5 software (W. Rychlick, National
Bioscience, Plymouth, MN, USA) and synthesized
commercially (Bex, Tokyo, Japan). PCR ampliWcations
were carried out in 10 �l reactions, each containing
0.25 U ExTaq polymerase (Takara, Tokyo, Japan),
0.3 �M of each primer, 200 �M dNTP, 1.0–4.0 mM
MgCl2, 1 £  PCR buVer 25 mM TAPS pH 9.3 (at
25°C), 50 mM KCl, 1 mM 2-mercaptoethanol and 20 ng
genomic DNA. The PCR programme consisted of a
denaturation step of 94°C/5 min, followed by 30 cycles
of 94°C/30 s, 50–68.5°C/30 s and 72°C/0.5–5 min, and a
Wnal incubation step of 72°C/7 min. Reaction products
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were electrophoresed on either agarose (Agarose ME,
Iwai Kagaku, Tokyo, Japan) or a MetaPhor agarose
(Cambrex Bio Science Rockland Inc., Rockland, MA,
USA) gels, depending on amplicon size, and were
visualized by ethidium bromide staining.

Development of CAPS (cleaved ampliWed 
polymorphic sequence) markers

PCR products were puriWed using the QIAquick PCR
puriWcation kit (Qiagen, Germantown, MD, USA) and
subjected to cycle sequencing using a Big Dye kit
(Applied Biosystem, Foster, CA, USA). Sequencing
reactions were puriWed by Sephadex G-50 (Amersham
Pharmacia Biotech AB, Uppsala, Sweden) and analy-
sed with an ABI prism 3100 genetic analyzer (Applied
Biosystem). Sequence data were aligned by ClustalW
software (http://www.ebi.ac.uk/clustalw/). Polymor-
phic restriction endonuclease sites were identiWed by
applying the Restriction Maps option at http://
arbl.cvmbs.colostate.edu/molkit/mapper/.

BAC screening

Pooled DNA was extracted from the cv. Morex BAC
library (Yu et al. 2000) using a standard method (Sam-
brook and Russell 2001), and this was used as a tem-
plate for PCR screening as described elsewhere (Stein
et al. 2005). Chromosome walking was achieved with
markers based on BAC sequences, obtained by shot-
gun sequencing of the contig surrounding vrs1 (Komat-
suda et al. 2007).

Sequence analysis

The EMBOSS package (http://emboss.sourceforge.net/)
was used for sequence analysis. Transposable elements
were characterized by BLASTN and BLASTX search
against the TREP database (http://wheat.pw. usda.gov/
ITMI/Repeats). The presence of putative genes in the
remaining sequences was identiWed by a BLASTX
search against all rice and Arabidopsis proteins, and by
a BLASTN search against all Triticeae ESTs. Regions
in which neither genes nor repetitive sequences could
be identiWed were submitted to RiceGAAS, the rice
genome automated annotation system (http://ricegaas.
dna.aVrc.go.jp). Rice genomic sequences were
obtained from the public rice genome sequence (Ver-
sion 3 at http://www.tigr.org). For the eYcient process-
ing of large datasets, de novo Perl programs were
written. Annotated sequences were presented visually
using the Perl Tk module.

Results

Saturation of the vrs1 region using barley EST markers

The two Xanking markers cMWG699 and MWG503
share homology with rice genes Os04g45490 and
Os04g46300 (respective e-values 7.3e-39 and 8.8e-
44), which lie in a 980 kb contig of nine rice BAC
clones on rice chromosome 4 (Fig. 1). Initially, 20
barley ESTs with homology to sequence within this
contig were selected to assemble an outline compar-
ative map. These were then supplemented with 20
barley ESTs, chosen on the basis of sequence
homology to sequences within BAC clones
OSJNBa0091D06 (accession AL606459) and
OSJNBa0011L07 (accession AL606587), and nine
barley ESTs mapping to the region deWned by the
overlap of these two BACs. The identity of all 49
ESTs and the experimental details relating to their
conversion to a CAPS format are provided in Sup-
plementary Table S2.

In all, 40 of the 49 ESTs were successfully PCR
ampliWed as a single product, and an analysis of the
wheat–barley CALs allowed 19 of these to be
assigned to chromosome 2H. Three EST amplicons
had a chromosomal location other than 2H, and these
were excluded from further investigation (See Sup-
plemental Table S2). With respect to the remaining
18 ESTs, CAL analysis was not able to deliver a chro-
mosomal location because either the amplicons from
cv. Betzes and cv. Chinese Spring co-electrophoresed,
or no product was produced from cv. Betzes. Rese-
quencing of the amplicons produced from templates
of the mapping parents AZ and KNG showed that 23
of the sequences possessed at least one single nucleo-
tide polymorphism, and all but one of these were
convertible to CAPS markers (See Supplemental
Table S2).

Twenty of the informative barley ESTs (e-
value < e-10) were successfully mapped to an interval
between cMWG699 and MWG503 including vrs1
(Fig. 1). The linear order of these markers in barley
and rice was identical. When high-resolution mapping
was used BC12348 (an EST contig consisting of
AJ468022 and CB881790) placed 0.053 cM distal to
vrs1. The mapping narrowed the location of vrs1 to a
0.06 cM interval between e40m36-1110S and BC12348
(Fig. 1). In addition, one barley EST was located on
chromosome 6H probably due to the large e-value
(0.19), and another barley EST was not mapped due
to the instability of PCR ampliWcation (See Supple-
mental Table S2).
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�

Marker development using orthologous ESTs

Two further rice genes (Os04g45580, Os04g45590) were
targeted for conversion to barley markers. For
Os04g45590, rice EST CF317052 was converted to an
STS marker, which mapped 0.016 cM proximal to vrs1
(Fig. 1). Two maize ESTs (CG266671 and BH406686)
share homology with the sequence of Os04g45580.
CAL analysis showed that copies of the former are
present on chromosomes 2H and 6H, and CG266671
was mapped within the cluster containing BQ468542 on
chromosome 2H (Fig. 1, See Supplemental Table S3).
BH406686 was assigned by CAL analysis to chromo-
somes 2H, 3H and 6H (See Supplemental Table S3).

Marker development using rice genomic sequence

The 17 kb of genomic sequence separating Os04g45580
and Os04g45610 was targeted for the generation of
further barley markers (Fig. 1). GENEMARK.HMM
predicted two distinct putative open reading frames
(ORFs) GM1, GM2. The former was located by CAL
analysis to four separate barley chromosomes, including
chromosome 2H (See Supplemental Table S4). When
the chromosome 2H GM1 sequence was cloned, six dis-
tinct repetitive sequences were revealed, indicating the
unsuitability of this sequence for mapping. GM2 was
assigned to both chromosomes 2H and 4H; and the
former copy included a ferrochelatase sequence, which
had been previously mapped to chromosome 5HL
(Genbank accession AF020791). In the Gramene data-
base we found a small (about 170 bp) predicted gene
GRME00000251530 (TIGR GeneModel), but this
sequence was not ampliWable from barley. Thus, no
non-genic rice sequence was convertible to a barley
marker, a result agreeing with Dubcovsky et al. (2001)
proposal that sequence conservation between rice and
barley is restricted mainly to coding regions.

Characterization of the 518 kb contig containing vrs1

A chromosome walk deWned the location of vrs1 within
a contig of six BAC clones (Komatsuda et al. 2007).
The contig spanned eight recombination events
between CB880437 and BC12348 (Fig. 1). The topmost
137 kb segment of the contig (between CB880437 and
e34m13-260S) had one recombination event in the high
resolution mapping population, corresponding to a
genetic to physical distance ratio of 0.058 cM/Mb. The
lowermost 95 kb segment (between BJ242706 and
BC12348) had seven recombinations corresponding to
a 0.56 cM/Mb ratio, whereas, the central 220 kb seg-
ment between e34m13-260S and BJ242706, and har-
bouring vrs1, did not show any recombination.

Of the 518,343 bp combined sequence (accession
number EF067844), over 82% consists of nested
transposable elements (Komatsuda et al. 2007), leav-
ing only seven ‘islands’ of a few kb in size which
can be classiWed as non-repetitive sequence (Fig. 2).
Sequences showing homology to known genes were
identiWed in islands 3, 6 and 7, whereas, the other
islands contain no such sequences. Vrs1/HvHox1, in
island 3, belongs to a homeobox gene family. The Vrs1
gene encodes a 222 amino acid polypeptide, including a
homeodomain of three helices and a leucine zipper motif
in its centre (Fig. 3). Orthologue of Vrs1 was Oshox14
(OS07g39320), which was located on rice chromosome
7 (Fig. 1). The Oshox14 sequence includes three exons
and two introns, with an exon–intron structure identi-
cal to that of Vrs1 (Fig. 3). The barley and rice amino
acid sequences are largely identical, containing a small
number of conserved amino acid changes. HvEP2
(island 7) is an expressed gene with unknown function.
�HvEP1 (island 6) probably arose as a result of the
duplication of HvEP2 (or vice versa), with the
sequence having been degenerated and interrupted by
several insertion events involving transposable ele-
ments (Fig. 2). No genic sequence is present either in
the 305 kb interval between vrs1 and HvEP2, or in the
164 kb region proximal to vrs1. Island 5 contains a
series of sequence motifs (referred to as HvPG1), pres-
ent also in rice chromosome 7, which are reminiscent
of exon/intron junctions (See Supplemental Fig. S1).
However, the HvPG1 sequence has no similarity with
any known genes or ESTs. Interestingly, the rice ortho-
logue of HvPG1 is located only 5.7 kb from Oshox14
on rice chromosome 7 (Fig. 1).

Genome rearrangements Xanking the vrs1 region

Screening of cv. Morex BAC library using barley
markers BQ468542, CF317052 and BC11013 identiWed

Fig. 1 Genetic and physical maps of vrs1 on barley chromosome
2HL, compared with the part of rice chromosomes 4 and 7. A por-
tion of rice chromosome 4 syntenic with the barley vrs1 region is
represented by nine rice BAC clones (right). A rice BAC from
chromosome 7, including Os07g39320 (Oshox14), the rice
orthologue of Vrs1, is depicted on the left. The scale of the maps
has been reduced in the lower parts. In the barley genetic map,
markers in italic are STSs derived from RFLPs and AFLPs, the
other markers are EST-derived. Markers with asterisks were de-
rived from rice and maize ESTs. Rice open reading frames are
shown in black boxes next to the BACs. Broken lines connect bar-
ley physical and genetic maps, dotted lines connect barley markers
with their rice orthologues. Red lines deWne the region where the
insertion/deletion of Vrs1/Oshox14 occurred
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7, 10 and 11 BAC clones, respectively, but none of
them overlapped with the vrs1 contig (Fig. 1, See Sup-
plemental Table S5). The physical order of these
three markers was determined based on the screening
result (See Supplemental Table S5). Although a lack
of polymorphism prevented genetic mapping of
BC11013 (corresponding to Os04g45600), the marker
was placed on barley BAC M185D09, which lies
physically proximal to vrs1 (Fig. 1). This analysis
suggested the insertion/deletion of Vrs1/Oshox14
occurred between Os04g45600 and Os04g45610
(Fig. 1).

Discussion

An orthologue of Vrs1 is present on rice chromosome 7

All rice genes that could be converted to barley mark-
ers in the Vrs1 region deWned a collinear region on rice
chromosome 4 (Fig. 1) but a rice orthologue of Vrs1
was missing in this collinear rice interval. The best
homologue, Oshox14, was located on rice chromosome
7. Since barley chromosome 2H is known to resemble
as shuZing of rice chromosomes 4 and 7 (Moore 1995;

Laurie 1997; Rostoks et al. 2005) this gene is likely rep-
resenting the putative orthologue of Vrs1.

Gene cloning experiments relying on cereal–rice
micro-collinearity has generated three diVerent scenar-
ios. The rice orthologues of wheat Vrn1 (Yan et al.
2003), and barley ror2 (Collins et al. 2003), Rym4/5
(Stein et al. 2005) and Ppd-H1 (Turner et al. 2005) are
all present in the collinear region of the rice genome.
However, the orthologues of maize Adh1 (Tarchini
et al. 2000) and Triticeae Sh2 (Li and Gill 2002) lie in a
non-homeologous rice chromosome. Finally, both bar-
ley Rpg1 (Brueggeman et al. 2002) and wheat Ph1
(GriYths et al. 2006) lack any rice orthologue. The rice
orthologue of Vrs1 was found in a syntenous chromo-
some (rice 7), but it is out of the collinear region
(Fig. 1).

Collinearity can be disrupted by small inversions,
tandem duplications, single or multiple gene indels and
transpositions (Devos 2005). It remains to be deter-
mined whether the transposition of Vrs1 took place in
the barley or the rice genome. Vrs1 and HvPG1 (and
their rice orthologues) are closely linked to one
another, so were probably transposed together. After
the separation of barley and rice, one of the following
two hypotheses is plausible: (1) the chromosomal

Fig. 2 Graphical annotation of a 518 kb BAC contig covering the
vrs1 region of six-rowed barley cv. Morex. Genes are depicted as
grey and transposable elements as coloured boxes (red: copia;
yellow: gypsy; green: athila; blue: CACTA). Repetitive elements
that are inserted into others are raised to illustrate the nesting

level. Seven segments lacking transposable elements, and thus
candidate gene islands are numbered. Transcriptional orientation
of genes is indicated by arrows, the pseudogene HvEP1 is indi-
cated by �, and the positions and names of markers are displayed
in red

Fig. 3 Comparison of the deduced amino acid sequences of
VRS1 and Oshox14. The three homeodomain helical sequences
are boxed, and a leucine zipper region is underlined. Residues in

common between the two sequences are indicated by asterisks.
Hyphens indicate a gap introduced to facilitate alignment.
Arrows indicate the positions of introns

VRS1      1:  MD------KHQLFDSSNVDTTFFAANGTAQGDTSKQRARRRRRRSARCGGGDGDGGEMDGGGDPKKRRLTDEQAEILELSFREDRKLETA
              **        *    * **    ** *  **     ******** *** ** * *** * ********* *** * ******* *****
Oshox14   1:  MDRYGEKQQQQQMFASYVDASLLAASGEVQG--ERPRARRRRRRGARCVGGGGGGGEVD-GGDPKKRRLSDEQVEMLELSFREERKLETG

VRS1     85:  RKVYLAAELGLDPKQVAVWFQNRRARHKNKTLEEEFARLKHAHDAAILHKCHLENELLRLKERLGATEQEVRRLRSAAGSHGASVDGGHA
              *** ** ********************* * *****  ****************** *******   * ************ **  **
Oshox14  88:  RKVHLASELGLDPKQVAVWFQNRRARHKSKLLEEEFSKLKHAHDAAILHKCHLENEVLRLKERLVVAEEEVRRLRSAAGSHTASGEGGDI

VRS1    175:  AGAVG---VCGGSPSSSFSTGTCQQQPGFSGADVLGRDDDL----------MMCVPEWF----LA
               *  *      ************ * * * * * ** ****             * ***    *
Oshox14 178:  MGLGGSGACVAGSPSSSFSTGTC-QPPSFGGGDHLG-DDDLVYVPEYGGYADNSVVEWFSLYGLI

Leucine zipper
Helix 3Helix 2

Helix 1
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segment containing Vrs1 was transposed within chro-
mosome 2H and (2) the chromosomal segment con-
taining Oshox14 was transposed from chromosomes 4
to 7. We favour the former hypotheses because overall,
the rice genome has retained its integrity more strongly
than has the barley one (Bennetzen and Ma 2003).
Vrs1 might have evolved a function (the suppression of
lateral spikelet development) that does not exist in
other cereals. We found that barley ortholog of
Os07g39280, which is co-located with Oshox14 in the
rice BAC AP004185 (Fig. 1), was mapped around the
centromere of barley chromosome 2H (Rostoks et al.
2005). Location of this barley orthologue (scsnp06322)
may indicate the original location of Vrs1 if the rear-
rangement happened in barley (hypothesis 1). Since
deletions for Vrs1 are viable (Komatsuda et al. 2007), it
is plausible that Vrs1 evolved from a ‘copy’ of an indis-
pensable ‘master’ gene, which is still present in its
ancestral location on chromosome 2H. The elucidation
of the chromosomal locations of Vrs1 orthologues in
related genera of Triticeae is required to provide an
evidential basis to distinguish between these two alter-
native hypotheses.

Genes of common descent can acquire distinct func-
tions or speciWcities in diVerent species. A prime exam-
ple of this relates to tb1 function in maize and foxtail
millet (Doust et al. 2004). The gene is a major factor in
the control of tillering in the former species but not in
the latter. Vrs1 encodes a transcription factor that
includes a homeodomain with a closely linked leucine
zipper motif (HD-ZIP), and its expression suppresses
the development of lateral spikelets (Komatsuda et al.
2007). The role of Oshox14, whose function remains to
be determined, may be closer to that played by the
ancestral gene, which is clearly not the suppression of
lateral spikelets. It is of course possible that the trans-
position event itself created a novel function for Vrs1,
but such speculation awaits the functional analysis of
Vrs1 orthologues in other cereal species, which will
allow an understanding of when, how and in which
genome the transposition happened.

The vrs1 is associated with a cold-spot 
of recombination and a low-gene density

Plant genomes all exhibit recombination ‘hot-spots’
and ‘cold-spots’, where recombination rates per kb are
much higher or lower than the genome average (Sch-
nable et al. 1998; Lichten and Goldman 1995). One of
the most comprehensive barley genetic maps cover
1,245 cM (Kleinhofs et al. 1993) distributed over seven
linkage groups. The barley haploid genome size is
»4,900 Mb (Arumuganathan and Earle 1991), yielding

an average of »4 Mb/cM. However, as in other species,
recombination is unevenly distributed in barley
(Künzel et al. 2000). Across the 1.08 Mb Mla BAC
contig, it ranges from 0.2 to 5.7 cM/Mb (Wei et al.
1999), and across the 217 kb Rph7 BAC contig from 0.4
to 13.3 cM/Mb (Brunner et al. 2003). Across the 650 kb
Rym4/5 contig, it ranges from 0.033 to 1.25 cM/Mb
leaving more than 300 kb contig without recombi-
nation from >7,500 gamets (Stein et al. 2005). Künzel
et al. (2000) categorized barley chromosomal sub-
regions into those of suppressed recombination
(<0.23 cM/Mb), high recombination (0.23–1.0 cM/Mb),
and very high recombination (>1.0 cM/Mb, ‘hot-
spots’). According to the criteria, vrs1 is located in a
region of suppressed recombination. In this study the
463 kb harbouring vrs1 has a map distance of 0.061 cM
(0.13 cM/Mb), leaving the 220 kb interval including
vrs1 without any recombination events from >13,000
gametes.

Recombination in a given region can be suppressed
by a high level of recombination in a neighbouring one
through chiasma interference. The 95 kb region
between BJ242706 and BC12348, distal to vrs1, showed
a considerably higher rate of recombination than the
adjacent region. This enhanced rate of recombination
may be due to the presence of the two similar loci
�HvEP1 and HvEP2, located just 17 kb from one
another (Fig. 2). Further research is needed to determine
whether crossing-over events are either distributed
evenly within the 95 kb segment, or are concentrated
within a small region between these two loci (i.e. in a
recombination hot-spot) in the seven recombinant
lines detected.

Recombination is known to be concentrated
within, or in the neighbourhood of genes (Schnable
et al. 1998). Cytogenetic observations have shown
that gene density is higher in distal regions of the
chromosome arm (Gill et al. 1996; Künzel et al. 2000;
Akhunov et al. 2003). The presence of ‘gene islands’
appears to be commonplace in grasses having a large
genome (SanMiguel et al. 1996; Feuillet and Keller
1999; Tikhonov et al. 1999; Wicker et al. 2001). An
average density of one gene every 20 kb was detected
in a gene island of barley (Caldwell et al. 2004). How-
ever, not all genes are located within gene clusters.
Thus, for example, only two genes (Rym4/5 and Hv-
MLL) co-locate to a 439 kb barley contig (Stein et al.
2005). We have shown here that vrs1 is not located
within a gene cluster; but rather is isolated from
neighbouring genes. The location of vrs1 in the gene
poor region might be consistent with the hypothesis
that vrs1 was moved to this region through transposi-
tion in barley.
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The synteny-based approach we have described here
was successful in developing a high-density genetic
map necessary for the map-based cloning of Vrs1.
Even though the rice Vrs1 orthologue is not in collin-
ear position with that of barley, synteny-based marker-
enrichment signiWcantly assisted in the construction of
a physical map for barley vrs1. This study illustrates the
advantages of the use of rice as a tool for positional
cloning in other grass species, and also stresses the
importance of implementing genomic studies directly
in the target species in the case of breakdown of collin-
earity.
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